Damned Heretics

Condemned by the established, but very often right

I am Nicolaus Copernicus, and I approve of this blog

I am Richard Feynman and I approve of this blog

Qualified outsiders and maverick insiders are often right about the need to replace received wisdom in science and society, as the history of the Nobel prize shows. This blog exists to back the best of them in their uphill assault on the massively entrenched edifice of resistance to and prejudice against reviewing, let alone revising, ruling ideas. In support of such qualified dissenters and courageous heretics we search for scientific paradigms and other established beliefs which may be maintained only by the power and politics of the status quo, comparing them with academic research and the published experimental and investigative record.

We especially defend and support the funding of honest, accomplished, independent minded and often heroic scientists, inventors and other original thinkers and their right to free speech and publication against the censorship, mudslinging, false arguments, ad hominem propaganda, overwhelming crowd prejudice and internal science politics of the paradigm wars of cancer, AIDS, evolution, global warming, cosmology, particle physics, macroeconomics, health and medicine, diet and nutrition.

HONOR ROLL OF SCIENTIFIC TRUTHSEEKERS

Henry Bauer, Peter Breggin , Harvey Bialy, Giordano Bruno, Erwin Chargaff, Nicolaus Copernicus, Francis Crick, Paul Crutzen, Marie Curie, Rebecca Culshaw, Freeman Dyson, Peter Duesberg, Albert Einstein, Richard Feynman, John Fewster, Galileo Galilei, Alec Gordon, James Hansen, Edward Jenner, Benjamin Jesty, Michio Kaku, Adrian Kent, Ernst Krebs, Thomas Kuhn, Serge Lang, John Lauritsen, Mark Leggett, Richard Lindzen, Lynn Margulis, Barbara McClintock, George Miklos, Marco Mamone Capria, Peter Medawar, Kary Mullis, Linus Pauling, Eric Penrose, Max Planck, Rainer Plaga, David Rasnick, Sherwood Rowland, Carl Sagan, Otto Rossler, Fred Singer, Thomas Szasz, Alfred Wegener, Edward O. Wilson, James Watson.
----------------------------------------------

Many people would die rather than think – in fact, they do so. – Bertrand Russell.

Skepticism is dangerous. That’s exactly its function, in my view. It is the business of skepticism to be dangerous. And that’s why there is a great reluctance to teach it in schools. That’s why you don’t find a general fluency in skepticism in the media. On the other hand, how will we negotiate a very perilous future if we don’t have the elementary intellectual tools to ask searching questions of those nominally in charge, especially in a democracy? – Carl Sagan (The Burden of Skepticism, keynote address to CSICOP Annual Conference, Pasadena, April 3/4, 1982).

It is really important to underscore that everything we’re talking about tonight could be utter nonsense. – Brian Greene (NYU panel on Hidden Dimensions June 5 2010, World Science Festival)

I am Albert Einstein, and I heartily approve of this blog, insofar as it seems to believe both in science and the importance of intellectual imagination, uncompromised by out of date emotions such as the impulse toward conventional religious beliefs, national aggression as a part of patriotism, and so on.   As I once remarked, the further the spiritual evolution of mankind advances, the more certain it seems to me that the path to genuine religiosity does not lie through the fear of life, and the fear of death, and blind faith, but through striving after rational knowledge.   Certainly the application of the impulse toward blind faith in science whereby authority is treated as some kind of church is to be deplored.  As I have also said, the only thing ever interfered with my learning was my education. My name as you already perceive without a doubt is George Bernard Shaw, and I certainly approve of this blog, in that its guiding spirit appears to be blasphemous in regard to the High Church doctrines of science, and it flouts the censorship of the powers that be, and as I have famously remarked, all great truths begin as blasphemy, and the first duty of the truthteller is to fight censorship, and while I notice that its seriousness of purpose is often alleviated by a satirical irony which sometimes borders on the facetious, this is all to the good, for as I have also famously remarked, if you wish to be a dissenter, make certain that you frame your ideas in jest, otherwise they will seek to kill you.  My own method was always to take the utmost trouble to find the right thing to say, and then to say it with the utmost levity. (Photo by Alfred Eisenstaedt for Life magazine) One should as a rule respect public opinion in so far as is necessary to avoid starvation and to keep out of prison, but anything that goes beyond this is voluntary submission to an unnecessary tyranny, and is likely to interfere with happiness in all kinds of ways. – Bertrand Russell, Conquest of Happiness (1930) ch. 9

(Click for more Unusual Quotations on Science and Belief)

BEST VIEWED IN LARGE FONT
Expanded GUIDE TO SITE PURPOSE AND LAYOUT is in the lower blue section at the bottom of every home page.

Seas will rise eighty feet, helped by methane from plants

Dwindling uncertainty in the greatest debate of all

Anyone who has finally chosen sides in the vexed question of human global warming – now you see it, now you don’t, according to which expert or journalist you read – might find that certainty undermined once again by current news and comment, depending which side you came down on.

The What, Me Worry? brigade, led by Tom Bethell currently, in his rather one-sided book The Politically Incorrect Guide to Science, now high on the Amazon hit list, and Fred Singer and Benny Peiser, both of whom run well informed mythbuster email lists puncturing every global warming weather balloon that comes within range, must surely have been given pause when they read the latest warming scare in the New York Review of Books.

This has the sea rising not three or ten feet but eighty feet, and talks of a fatal tipping point approaching, beyond which everything slides toward hell on earth without a chance to reverse it.

The Earth’s climate is nearing, but has not passed, a tipping point beyond which it will be impossible to avoid climate change with far-ranging undesirable consequences. These include not only the loss of the Arctic as we know it, with all that implies for wildlife and indigenous peoples, but losses on a much vaster scale due to rising seas.

The Earth’s history suggests that with warming of two to three degrees, the new sea level will include not only most of the ice from Greenland and West Antarctica, but a portion of East Antarctica, raising the sea level by twenty-five meters, or eighty feet. Within a century, coastal dwellers will be faced with irregular flooding associated with storms. They will have to continually rebuild above a transient water level.

Can this survey really be wrong? We do have one reason to think so, which is that the New York Review of Books’ record on HIV?AIDS stands as a remarkable testament to the principle that “the intellectuals are usually wrong,” as one academic put it recently in the New York Observer about international affairs. The Review drew upon Richard Horton, editor of the Lancet, instead of founder Robert Silvers’ correspondent at Yale, Serge Lang, and paid the price.

Horton is one of the few responsible establishment memebers who have devoted some time to analyzing the obvious difficulties with HIV as the cause of AIDS that Peter Duesberg has never stopped pointing out, and yet failed to grasp the nettle fully and tear it out of the ground as a grotesque weed in the flower bed of science, apparently because he cannot quite credit the full story of how entirely wrong HIV=AIDS must be, if the Duesberg critique is as correct as the faiulure of referees to fault it implies. He did come close to it, though.

As the editor of a leading medical journal one can empathize, perhaps. Few in high positions who enjoy the public trust in science are going to escape unscathed when HIV=AIDS unwinds, since almost everyone has gone along with it. There is a serious question as to whether science and medicine can afford to acknowledge such a 20 year gallop down the wrong path by leading scientists, ignoring every warning and followed by a baggage train which is now one of the largest ever seen in science, including its tens of thousands of hearses.

On the other hand, returning to the climate discussion, knocking out one of the assumptions of the tree huggers we have the remarkable news that Ronald Reagan may have been right after all to blame the trees (see Killer Trees

“After opining in August 1980 that “trees cause more pollution than automobiles do,” Reagan arrived at a campaign rally to find a tree decorated with this sign: “Chop me down before I kill again.”

****************************************

Trivial side note on successful lawyerly weaseling: The page referenced above is a Washington Monthly amusement called The Mendacity Index, which goes thorough four presidents (Reagan, Clinton and the two Bush’s) quoting their prevarications and asking the reader to choose the most mendacious. One example is that Clinton’s notorious line “I did not have sexual relations with that woman” (wags finger at camera). But in fact this could be defended and has been by dictionary mavens as an accurate statement. If you resort to Merriam Webster’s you will in fact find that the phrase “sexual relations” is defined as “coitus”, with no other meaning.

While claims are made that no other meaning is mentioned in any dictionary we found, however, a second meaning was listed at dictionary.com under Sexual Relations as 2. Sexual activity between individuals, a definition drawn from the American Heritage Dictionary of the English Language published in 2000 by Houghton Mifflin. (End of trivial side note, resumption of post)

*********************************

According to the Max Planck Institute, that is, it turns out that plants and trees, which absorb carbon dioxide, are also giving off methane, a big global warming conributor, at a high rate:

In terms of total amount of production worldwide, the scientists’ first guesses are between 60 and 240 million tonnes of methane per year. That means that about 10 to 30 percent of present annual methane production comes from plants. The largest portion of that – about two-thirds – originates from tropical areas, because that is where the most biomass is located. The evidence of direct methane emissions from plants also explains the unexpectedly high methane concentrations over tropical forests, measured only recently via satellite by a research group from the University of Heidelberg.

But why would such a seemingly obvious discovery only come about now, 20 years after hundreds of scientists around the globe started investigating the global methane cycle? “Methane could not really be created that way,” says Dr. Frank Keppler. “Until now all the textbooks have said that biogenic methane can only be produced in the absence of oxygen. For that simple reason, nobody looked closely at this.

…By “looking closely” – despite established opinion – they made a discovery that will require textbooks to have their passages about methane production rewritten.”

In other words, a false paradigm that biological methane could not be created in the presence of oxygen threw scientists off, and in turn they misled us. The textbooks we were all following are wrong.

This is not the only reason to worry about trees, of course, for as it recently emerged there is a question where they should be planted to combat global warming. Evidently not in the North.

At this week’s (Dec 5 2005) climate conference in Montreal there have been a number of proposals to plant trees for the purpose of absorbing carbon emissions and helping mitigate climate change. However, a new study from the Carnegie Institution’s Department of Global Ecology and Lawrence Livermore National Laboratory says that careful consideration should be given as to where these forests are planted. Planting trees in temperate regions could actually contribute to global warming.

The study, using complex climate modeling software to simulate changes in forest cover and then measuring the impact on global climate, found that northern forests tend to warm the Earth because they absorb a lot of sunlight without losing much moisture. The situation is different in the tropics where higher temperatures result in higher rates of evapotranspiration, the process by which forests release water into the atmosphere. Tropical forests may have a net cooling impact relative to northern forests.

The research has important implications for the greenhouse gas debate. The United States wants any future agreement on climate to include provisions for tradable carbon credits whereby industrial countries could exceed emissions limits by planting forests and exchanging carbon allotments with forested countries. These new findings suggest that reforestation programs should focus on planting trees in the tropics and not in temperate or boreal regions.

It seems that these examples at least confirm that there is always uncertainty in science and where there is uncertainty there is always hope. We have to say however that the onrush of basic findings about the human contribution to global warming is beginning to leave very little room for maneuver.


But what eventually becomes clear, as Bowen tells this long story, is essentially how irrelevant it is to the current climate problem. By burning coal and gas and oil in such enormous amounts, we have raised the carbon dioxide level in the atmosphere far above what it has ever been during even the very long period one can study with ice cores. As such, a brand-new experiment is taking place, one that is out of control.

British researchers, examining almost six thousand soil borings across the UK, found another feedback effect. Warmer temperatures (growing seasons now last eleven days longer at that latitude) meant that microbial activity had increased dramatically in the soil. This, in turn, meant that much of the carbon long stored in the soil was now being released into the atmosphere. The quantities were large enough to negate all the work that Britain had done to switch away from coal to reduce carbon in the atmosphere. “All the consequences of global warming will occur more rapidly,” said Guy Kirk, chief scientist on the study. “That’s the scary thing. The amount of time we have got to do something about it is smaller than we thought.”

This seems especially true if one reads the New York Review of Books McGibbons piece, from which those paragraphs are excerpted.

The New York Review of Books has this short article by Hansen, The Tipping Point by James Hansen

(show)

The New York Review of Books

Home · Your account · Current issue · Archives · Subscriptions · Calendar · Classifieds · Newsletters · Gallery · NYR Books

Volume 53, Number 1 · January 12, 2006

The Tipping Point?

By James Hansen

The Earth’s climate is nearing, but has not passed, a tipping point beyond which it will be impossible to avoid climate change with far-ranging undesirable consequences. These include not only the loss of the Arctic as we know it, with all that implies for wildlife and indigenous peoples, but losses on a much vaster scale due to rising seas.

Ocean levels will increase slowly at first, as losses at the fringes of Greenland and Antarctica due to accelerating ice streams are nearly balanced by increased snowfall and ice sheet thickening in the ice sheet interiors.

But as Greenland and West Antarctic ice is softened and lubricated by meltwater, and as buttressing ice shelves disappear because of a warming ocean, the balance will tip toward the rapid disintegration of ice sheets.

The Earth’s history suggests that with warming of two to three degrees, the new sea level will include not only most of the ice from Greenland and West Antarctica, but a portion of East Antarctica, raising the sea level by twenty-five meters, or eighty feet. Within a century, coastal dwellers will be faced with irregular flooding associated with storms. They will have to continually rebuild above a transient water level.

This grim scenario can be halted if the growth of greenhouse gas emissions is slowed in the first quarter of this century.

—From a presentation to the American Geophysical Union, December 6, 2005

ALso, The Coming Meltdown by Bill McGibbon

From the New York Review of Books, The Coming Meltdown by Bill McKibben

We are forced to face the fact that a century’s carelessness is now melting away the world’s storehouses of ice, a melting whose momentum may be nearing the irreversible. It’s as if we were stripping the spectrum of a color, or eradicating one note from every octave. There are almost no words for such a change: it’s no wonder that scientists have to struggle to get across the enormity of what is happening.

:

(show)

The New York Review of Books

Volume 53, Number 1 · January 12, 2006

The Coming Meltdown

By Bill McKibben

Thin Ice: Unlocking the Secrets of Climate in the World’s Highest Mountains

by Mark Bowen

Henry Holt, 463 pp., $30.00

Dancing at the Dead Sea: Tracking the World’s Environmental Hotspots

by Alanna Mitchell

University of Chicago Press, 239 pp., $25.00

The year 2005 has been the hottest year on record for the planet, hotter than 1998, 2002, 2004, and 2003. More importantly, perhaps, this has been the autumn when the planet has shown more clearly than before just what that extra heat means. Consider just a few of the findings published in the major scientific journals during the last three months:

—Arctic sea ice is melting fast. There was 20 percent less of it than normal this summer, and as Dr. Mark Serreze, one of the researchers from Colorado’s National Snow and Ice Data Center, told reporters, “the feeling is we are reaching a tipping point or threshold beyond which sea ice will not recover.” That is particularly bad news because it creates a potent feedback effect: instead of blinding white ice that bounces sunlight back into space, there is now open blue water that soaks up the sun’s heat, amplifying the melting process.

—In the tundra of Siberia, other researchers report that permafrost has begun to melt rapidly, and, as it does, formerly frozen methane—which, like the more prevalent carbon dioxide, acts as a heat-trapping “greenhouse gas”—is escaping into the atmosphere. In some places last winter, the methane bubbled up so steadily that puddles of standing water couldn’t freeze even in the depths of the Russian winter.

—British researchers, examining almost six thousand soil borings across the UK, found another feedback effect. Warmer temperatures (growing seasons now last eleven days longer at that latitude) meant that microbial activity had increased dramatically in the soil. This, in turn, meant that much of the carbon long stored in the soil was now being released into the atmosphere. The quantities were large enough to negate all the work that Britain had done to switch away from coal to reduce carbon in the atmosphere. “All the consequences of global warming will occur more rapidly,” said Guy Kirk, chief scientist on the study. “That’s the scary thing. The amount of time we have got to do something about it is smaller than we thought.”

Such findings—and there are more like them in virtually every issue of Science and Nature—came against the backdrop of Hurricanes Katrina and Rita, and the now record-breaking Atlantic storm season that has brought us back around the alphabet and as far as Hurricane Epsilon. Because hurricanes draw their power from the warm water in the upper layers of the sea’s surface, this bout of storminess served as a kind of exclamation point to a mid-August paper by the MIT researcher Kerry Emmanuel demonstrating that such storms have become more powerful and long-lasting, and would likely continue to increase in destructiveness in the future.

But the hurricanes also demonstrated another fact about global warming, this one having nothing to do with chemistry or physics but instead with politics, journalism, and the rituals of science. Climate change somehow seems unable to emerge on the world stage for what it really is: the single biggest challenge facing the planet, the equal in every way to the nuclear threat that transfixed us during the past half-century and a threat we haven’t even begun to deal with. The coverage of Katrina’s aftermath, for instance, was scathing in depicting the Bush administration’s incompetence and cronyism; but the President —and his predecessors—were spared criticism for their far bigger sin of omission, the failure to do anything at all to stanch the flood of carbon that America, above all other nations, pours into the atmosphere and that is the prime cause of the great heating now underway. Though Bush has been egregious in his ignorance about climate change, the failure to do anything about it has been bipartisan; Bill Clinton and Al Gore were grandly rhetorical about the issue, but nonetheless presided over a 13 percent increase in America’s carbon emissions.

That lack of preparation and precaution dwarfs even the failure to prepare for the September 11 attacks, and its effects will be with us far longer. It’s not, of course, that America could in two decades have prevented global warming. But we could have begun taking the steps to keep it from spinning entirely out of control, steps that grow ever more difficult to take with each passing season. The books under review, though neither deals directly with the politics of global warming, help us understand some of the reasons why we’ve so far done so little.

The best of the two—indeed, one of the best books yet published on climate change—is Mark Bowen’s Thin Ice, which describes the science of global warming through the experience of the Ohio State University scientist Lonnie Thompson, the preeminent explorer of tropical and semitropical glaciers today, and the principal decoder of the secrets trapped in their ice. A minor defect is that the book was clearly designed to sell to readers of Jon Krakauer’s classic Everest account, Into Thin Air—the title and the cover are bizarrely similar. And because of that decision, too much space is devoted to Thompson’s adventures in the “death zone” above 18,000 feet on various Andean and Himalayan peaks, and too many tales are told about the Sherpas who make the expeditions possible and the hot-air balloons designed to float ice cores back to the base of the mountain before they could melt. These stories make the book needlessly long and distractingly repetitive, and detract a little from its emphasis on glaciers and what is happening to them.

But only a little. Bowen is one of the few people who could have written this book. Himself an expert climber who has written for popular magazines like Climbing, he also has a Ph.D. in physics from MIT. He has been able to climb mountains along with Thompson to examine the glaciers and explain both the scientific and political consequences of their melting.

For many years, scientists trying to reconstruct past climate history have studied glaciers. Since each year’s snowfall lies in a distinct layer, a core sample from such an ice field can be read much like a tree ring to distinguish long-term trends in weather. Moreover, small bubbles of air trapped in the ice can be sampled to provide a record of atmospheric conditions from any time in the past. One can tell from them how much carbon dioxide was in the atmosphere and what the weather was like—a Siberian core extracted in the 1980s demonstrated a perfect correlation between fluctuations in temperature and carbon dioxide levels and helped to embolden a few researchers to make the first global warming forecasts with real confidence.

For many years, researchers concentrated on taking core samples from alpine and polar ice—they were relatively easy to get to, and no one thought that high mountain ice in the equatorial zones would yield much interesting information because the tropics were seen as unvarying from year to year and hence climatologically dull. But beginning in the 1970s Thompson and his team began perfecting the techniques of drilling long, thin cores from the high and wild glaciers of Peru, Ecuador, Nepal, and Tibet, and then examining them in their laboratory in Columbus. They also began to translate the information latent in the cores.

The aim of their research was to figure out what had driven changes in the earth’s climate in the past—how and why ice ages emerged and retreated, why there have been smaller but abrupt swings back and forth in climate even during the current interglacial period. Thompson has done much to demonstrate that changes in tropical regions—which account, after all, for half the world’s surface—drive the process. Many of his findings conflicted with other research that seemed to show that events in the north Atlantic—particularly the waxing and waning of warm deep ocean currents —were the chief cause of rapid climate change in times past.

An immense amount of scientific effort (and, as Bowen makes amusingly clear, scientific vitriol) has been spent on this topic, with much debate about whether the principal causes of climate change have been in the Gulf Stream or the Indonesian Warm Pool or somewhere else altogether. But what eventually becomes clear, as Bowen tells this long story, is essentially how irrelevant it is to the current climate problem. By burning coal and gas and oil in such enormous amounts, we have raised the carbon dioxide level in the atmosphere far above what it has ever been during even the very long period one can study with ice cores. As such, a brand-new experiment is taking place, one that is out of control.

The second half of Bowen’s book, interspersed throughout his tale of adventure at high altitudes but only loosely related to Thompson and his fieldwork, is a history of the realization that a vast change was taking place. It is the best compact history of the science of global warming I have read. Bowen begins, appropriately, with nineteenth-century scientists like John Tyndall and Svante Arrhenius, Europeans who began to understand how carbon dioxide acted as a heat-trapping gas in the atmosphere and who began to worry about the amounts of it that a newly industrialized society was spewing out of its stacks.

The story takes on more urgency in the 1950s, when oceanographers like Roger Revelle and Hans Suess undertook more concentrated speculation and when the environmental scientist Charles Keeling investigated the effects of CO2, taking actual measurements with a CO2 detector on the slopes of Mauna Loa in Hawaii.[1] He was soon able to show that the gas was indeed accumulating in the atmosphere, and doing so rapidly. (Pre–industrial revolution concentrations of CO2 were about 275 parts per million; by the late 1950s the number was 315, and today it is nearly 380.)

The story of greenhouse science continued in the 1970s and 1980s, as scientists began developing global climate models that attempted to forecast what the new chemicals would mean for the planet. And it reached a high point in the early summer of 1988 when one of the most important of those climate modelers, a NASA scientist named James Hansen, appeared before a hearing of the Senate Committee on Energy and Natural Resources. The United States was enduring one of the great heat waves in its history:

Barges were stranded by the thousands in the Mississippi River. Civil War vessels last seen when Confederate troops scuttled them on their retreat from Vicksburg rose above the surface of the Big Muddy, a Mississippi tributary. The West experiences the worst forest fires in recorded history.

Against that backdrop, Hansen was given fifteen minutes to testify. He made three points: that he was “99 percent confident” that the earth was warming; that the warming could be traced with “a high degree of confidence” to the greenhouse effect; and that in his model the greenhouse effect was already strong enough to increase the odds of extreme summer heat and drought in the US. He was careful not to say that the heat wave of 1988 was the result of global warming (a claim that would never be possible for any particular hot spell or drought or hurricane); but he said something very important to a group of reporters as he left the hearing: “It’s time to stop waffling so much and say that the greenhouse effect is here and is affecting our climate now.”

That was the moment at which the greenhouse era really began. As a NASA employee, Hansen had shown great courage in speaking straightforwardly, which earned him endless trouble from his bosses in the federal government (the next year they tried to rewrite his congressional testimony until then-Senator Al Gore stopped them). But it also earned him contempt from his fellow scientists. In Bowen’s words,

They all objected to his simplification, his lack of caution, his disregard for the formal, highly qualified—one could even say codified—manner in which scientific conclusions are stated in the peer-reviewed journals.

If Hansen had succeeded temporarily in putting the issue before the public in 1988, “other forces had quickly swept it away.” Some of those forces came from industry—as Ross Gelbspan chronicled in his excellent 1997 book The Heat Is On, the coal and oil industry took up the work of disinformation in earnest, finding a few scientists and scientific hangers-on to write Op-Ed pieces and appear on talk shows to provide a “balanced” view. Journalism proved unequal to the task of separating scientific consensus from minor or trivial dissent; almost every story about global warming was accompanied by an obligatory statement of denial.

Science, on the other hand, both rose to the occasion and failed badly. The world’s climatologists organized themselves into the Intergovernmental Panel on Climate Change, or IPCC, in those heady months of 1988. With large government funding that was partly made available because of Hansen’s warnings, the panels of experts soon had a vast collection of studies and computer models to pore over. And though the IPCC’s procedures were byzantine—they relied, Bowen writes, on “a peer review process…incalculably more cumbersome than anything ever applied to a scientific issue before”—the group eventually managed to reach a potent conclusion. By 1995, the IPCC was ready to conclude that “the balance of evidence suggests that there is a discernible human influence on global climate.” This result was remarkable: more than a thousand scientists, working through a process that allowed much political input from governments concerned to deny global warming, nonetheless found the evidence so overwhelming that they were able to state that one species, ours, was now changing pretty much everything on the face of the planet.

But at the same time, the conclusions were watered down and over-hedged, playing at least as much into the hands of the few remaining skeptics, who seized on every possible opportunity to dampen public concern. The scientific method, pursued in this fashion, seemed unequal to the gravity of the task at hand. Bowen writes, “I believe it is fair to say that serious scientific debate about the existence and potential danger of human-induced global warming died with that statement.” That is true—but it’s also true that it contributed remarkably little to the larger public debate, especially in the US. And that’s a failure for which scientists bear some of the blame.

Bowen quotes Hansen:

The scientific method does require that you continually question the conclusions that you draw and put caveats on the conclusion—but that can be misleading to the public. It seems to me that when we talk to the public we have to try to give a summary. And it’s not easy for most scientists to do—and not easy for me.

Clearly, for the mild-mannered Hansen, who has no taste for public controversy, it was not easy. But he did it. And for that, as well as for his original scientific work, he deserves not only enormous credit but also, I would suggest, the Nobel Prize, perhaps the first joint Chemistry-Peace award.

By contrast, when Bowen first interviewed Thompson in 1997 on the slopes of the highest mountain in Bolivia, he found him reticent to a fault:

He hid behind [the] details. He would not come out with a grand pronouncement about global warming…. He may have been holding back out of fear that I would distort his words, but I think he was also looking over his shoulder at his academic peers, aiming to duck the potshots that inevitably flew in those days when anyone walked out on a scientific limb and said in public what nearly all of them knew inside.

It would be, he writes, “almost a year and a half before Lonnie would carefully open up.”

But through his talks with Bowen, and also more and more with policymakers and other journalists, Thompson has performed a very valuable public service—more valuable, in some ways, than his research into paleoclimatology, interesting as that is. Thompson’s most important scientific contribution is his simplest: by going back year after year to tropical glaciers in order to take core samples for his “real” work, he has been able to document the astonishing speed with which those glaciers are disappearing. His photographs documenting this trend have been valuable in persuading people to take global warming seriously. There is something alarming and undeniable about change occurring across the globe that can be measured from one year to the next, for instance, the Qori Kalis glacier on Quelccaya, which Thompson has been visiting for thirty years:

They always camp in the moraine by the large boulder that Qori Kalis was pushing downhill when Lonnie first saw it…in 1974. An eighteen-acre lake now lies between the boulder and receding glacial margin, a lake that did not exist as recently as 1987.

And the loss was accelerating. One set of photos taken in 1992

demonstrated that the tongue [of the glacier] had retreated three times faster over the previous eight years than it had in the twenty years before that. Volume loss, which takes thinning into account, had grown by a factor of seven. More images taken in 1998 showed that the retreat had increased by another factor of three in the intervening five years.

Thompson estimates that the entire Quelccaya ice cap, which thirty years ago covered twenty-seven square miles and was five hundred feet deep at its 18,000-foot summit, will die before he does.

Perhaps Thompson’s most dramatic contribution to the public debate over global warming came in February 2001 when he told a session at the annual meeting of the American Association for the Advancement of Science that the snows on the top of Mt. Kilimanjaro would disappear within twenty years and that “little can be done to save them.” That image stuck in people’s minds—it was at least as important as the near-simultaneous release of the IPCC’s next assessment, which was more forthright than ever in its declaration that “most of the warming observed over the last 50 years is attributable to human activities” and in its prediction that the planet’s average temperature might increase as much as ten degrees Fahrenheit before the century was out.

But by that point George Bush had been elected president of the United States, and the issue of climate change had disappeared almost entirely—and with it the chance of altering the early trajectory of development in India and particularly China, which are now starting to rival American contributions to the earth’s carbon overload. With his eventual willingness to speak unambiguously, Thompson joined the list of courageous scientists, men like Hansen, or Harvard’s James McCarthy, who several years ago reported the shock of seeing open water at the North Pole. But it’s clear to him, as to most of his colleagues, that our understanding has come very late. “I think we’d better start getting used to the idea of living in a hotter world,” he tells Bowen in a barroom conversation one day in Kenya.

Scientists are by training and nature conservative and…have probably underestimated our impact. Fifty years from now—I hope I’m wrong—I think you may be living in a world where you don’t go outside between one and four in the afternoon.

At this stage, our best hope is simply to keep the warming process from accelerating to such an extent that it gets entirely out of control.

If the dry language of science has sometimes been an impediment to action, the language of emotion has its own dangers, as can be seen from Alanna Mitchell’s Dancing at the Dead Sea, a book thick with sentiment. Mitchell, formerly a reporter with Toronto’s Globe and Mail, was in 2000 “named the best environmental reporter in the world” by the Reuters Foundation. Something has apparently happened in the years since, because her book is filled with clichés (stupid natives in Madagascar, wise natives in the Arctic) and with unlikely events (a lone man sneaking out of a protected forest carrying “a massive old growth tree balanced on his shoulder”). About her own fear of being attacked by tropical fishes, she writes:

It’s clear to me that unless I swim with the piranhas, I will be not only consumed by fear but also untouched by the hope I seek. I will be unable to believe that humans, who I know have given up even such ingrained practices as slavery and cannibalism, will also give up the fable that they can keep harming the earth.

Still, she raises an important question. Every time she corners a scientist —the veteran Oxford environmental researcher Norman Meyers, the great diver and marine biologist Sylvia Earle, the eminent conservationist Russell Mittermeier—she asks, “Are humans a suicidal species?” They mostly dismiss her question with some reassuring words to the effect that we can still make up our minds to do better. But in fact it’s a question that in some way or another needs to be near the center of our public debates. It rose for the first time in the wake of Hiroshima and Nagasaki; for a while, many people seemed to expect an Armageddon-like nuclear exchange, and then they seemed to discount the possibility. The attacks on New York and Washington at the beginning of this millennium have raised the question of our being a suicidal species again.

It is also the question raised by our environmental predicament, and Mitchell deserves credit for risking the scorn of reviewers by bringing it into the open. She quotes President Bush, a few weeks after taking office, explaining why he’s opting out of the Kyoto protocols, the only official international attempt to deal with global warming:

I will explain as clearly as I can, today and every other chance I get, that we will not do anything that harms our economy…. That’s my priority. I’m worried about the economy.

It’s not as if Bush is alone in this thought. And it does seem to epitomize the danger that the satisfactions of consumer life and business success have become almost sacred while the physical world now turning to chaos before our eyes is taken for granted, and not seen as the reality that must be faced.[2]

It’s to this question of reality that Gretel Ehrlich turns her formidable talent in The Future of Ice, recently published in paperback.[3] Like Thompson, she is fascinated by ice—her “journey into the cold” takes her from Greenland to Argentina—and she provides what may be a kind of obituary for the planet’s ice regions, and their special forms of life, written while they still exist. It is, she says, a “cry for help—not for me, but for the tern, the ice cap, the polar bear, and the lenga forest; for the river of weather and the ways it chooses to be born.”[4]

It is hard not to approach this year’s oncoming winter in an elegiac mood, with the testimony of Thompson’s ice cores and the Arctic sea ice data and Ehrlich’s account making the season’s natural and lovely darkness seem suddenly somber. We are forced to face the fact that a century’s carelessness is now melting away the world’s storehouses of ice, a melting whose momentum may be nearing the irreversible. It’s as if we were stripping the spectrum of a color, or eradicating one note from every octave. There are almost no words for such a change: it’s no wonder that scientists have to struggle to get across the enormity of what is happening.

Notes

[1] Keeling and Thompson were jointly honored with this year’s prestigious Tyler Prize for Environmental Achievement.

[2] This same attitude was on display in early December when the American “negotiating” team at a crucial Kyoto follow-up meeting in Montreal once again tried to block any real plan for controlling emissions.

[3] The Future of Ice: A Journey into Cold (Vintage, 2005).

[4] The lenga is a relative of the American beech tree which grows high in the Andes mountains and is threatened by commercial loggers. Copyright © 1963-2006 NYREV,

Here is the latest on plants and methane,from mongabay.com

A week after announcing their surprising discovery that plants release 10 to 30 percent of the world’s methane—a potent greenhouse gas—researchers from the Max Planck Institute for Nuclear Physics warn that plants should not be blamed for recent global warming.

:

(show)

Don’t blame plants for global warming

mongabay.com

January 18, 2006

EDITOR’S SUMMARY: A week after announcing their surprising discovery that plants release 10 to 30 percent of the world’s methane—a potent greenhouse gas—researchers from the Max Planck Institute for Nuclear Physics warn that plants should not be blamed for recent global warming.

The scientists say that because emissions from plants are a natural source, they have existed long before man’s influence started to impact atmospheric concentrations of greenhouse gases. Anthropogenic emissions—especially agricultural cultivation—are responsible for the well-documented increase in atmospheric methane since pre-industrial times. Emissions from plants contribute to the natural greenhouse effect and not to the recent temperature increase usually referred to as “global warming”.

“The potential for reduction of global warming by planting trees is most definitely positive,” said Frank Keppler, a scientist involed in the research. “The fundamental problem still remaining is the global large-scale anthropogenic burning of fossil fuels.”

The new comments are included in the following release from the Max Planck Institute for Nuclear Physics. For reference, the original release announcing the research is also included.

Global warming – the blame is not with the plants

Max Planck Institute for Nuclear Physics release

January 18, 2006

In a recent study (Nature, 12 January 2006), scientists from the Max Planck Institute for Nuclear Physics, Utrecht University, Netherlands, and the Department of Agriculture and Rural Development for Northern Ireland, UK, revealed that plants produce the greenhouse gas methane. First estimates indicated that this could account for a significant proportion of methane in the atmosphere. There has been extended media coverage of this work with unfortunately, in many instances, a misinterpretation of the findings. Furthermore, the discovery led to intense speculations on the potential relevance of the findings for reforestation programs in the framework of the Kyoto protocol. These issues need to be put in the right perspective.

The most frequent misinterpretation we find in the media is that emissions of methane from plants are responsible for global warming. As those emissions from plants are a natural source, they have existed long before man’s influence started to impact upon the composition of the atmosphere. It is the anthropogenic emissions which are responsible for the well-documented increasing atmospheric concentrations of methane since pre-industrial times. Emissions from plants thus contribute to the natural greenhouse effect and not to the recent temperature increase known as “global warming”. Even if land use practices have altered plant methane emissions, which we did not demonstrate, this would also count as an anthropogenic source, and the plants themselves cannot be deemed responsible.

Furthermore, our discovery led to intense speculation that methane emissions by plants could diminish or even outweigh the carbon storage effect of reforestation programs with important implications for the Kyoto protocol, where such programs are to be used in national carbon dioxide (CO2) reduction strategies. We first stress that our findings are preliminary with regard to the methane emission strength. Emissions most certainly depend on plant type and environmental conditions and more experiments are certainly necessary to quantify the process under natural conditions. As a first rough estimate of the order of magnitude we have taken the global average methane emissions as representative to provide a rough estimate of its potential effect on climate. These estimates (for details, see below) show that methane emissions by plants may slightly diminish the effect of reforestation programs. However, the climatic benefits gained through carbon sequestration by reforestation far exceed the relatively small negative effect, which may reduce the carbon uptake effect by up to 4 per cent. Thus, the potential for reduction of global warming by planting trees is most definitely positive. The fundamental problem still remaining is the global large-scale anthropogenic burning of fossil fuels.

Details of calculations used:

In our study, we have linked global methane emission estimates to plant growth, which is generally quantified as net primary productivity (NPP). On a global basis NPP amounts to ~62 x 1015 g of carbon/yr, which corresponds to an uptake of 227 x 1015 g of CO2/yr. On the emission side, our study suggests annual global methane emissions by plants of 62-236 x 1012 g/yr CH4. Thus, for each kg of CO2 assimilated by a plant roughly 0.25 to 1 to 4 g of CH4 is released. During growth of a new forest, up to 50% of plant tissue is lost again in the short term through decomposition of plant litter of leaves and roots. This then doubles the estimate to 0.5 to 2 g methane emitted per kg of CO2 assimilated and stored in plants for longer periods. Over a 100-year horizon, the global warming potential of methane is ~20 times higher than that of carbon dioxide. Thus, for climate, the benefits gained by reforestation programs would be lessened by between 1 and 4 per cent due to methane emissions from the plants themselves. Plants release methane, a potent greenhouse gas, finds study

Max Planck Institute for Nuclear Physics release

January 11, 2006

In the last few years, more and more research has focused on the biosphere; particularly, on how gases which influence the climate are exchanged between the biosphere and atmosphere. Researchers from the Max Planck Institute for Nuclear Physics have now carefully analysed which organic gases are emitted from plants. They made the surprising discovery that plants release methane, a greenhouse gas – and this goes against all previous assumptions.

Equally surprising was that methane formation is not hindered by the presence of oxygen. This discovery is important not just for plant researchers but also for understanding the connection between global warming and increased greenhouse gas production (Nature, January 12, 2006).

Methane is the greenhouse gas which has the second greatest effect on climate, after carbon dioxide. The concentration of methane in the atmosphere has almost tripled in the last 150 years. Methane is best known as natural gas, currently an important energy source. Nonetheless, only part of the methane uptake in the atmosphere is due to industrial activities connected to energy production and use. More important for the increase of methane in the atmosphere is the increase in so-called “biogenic” sources, e.g., rice cultivation or domestic ruminants related to the rise in the world’s population. Nowadays, methane in the atmosphere in fact is largely of biogenic origin.

Until now, it has been assumed that biogenic methane is formed anaerobically, that is, via micro-organisms and in the absence of oxygen. In this way, acetate or hydrogen and carbon dioxide are transformed into methane; they themselves are created in the anaerobic decomposition of organic materials. The largest anoxic sources of methane are wetlands and rice fields, as well as the digestion of ruminants and termites, waste disposal sites, and the gas produced by sewage treatment plants. According to previous estimates, these sources make up two-thirds of the 600 million tonnes worldwide annual methane production.

Related articles

Ocean gas hydrates could trigger catastrophic climate change

Global warming will cause gasses trapped beneath the ocean floor to release into the atmosphere according to research presented at the Annual Conference of the Royal Geographical Society. The impact could initiate a catastrophic global greenhouse effect.

Temperate forests may worsen global warming, tropical forests fight higher temperatures

At this week’s climate conference in Montreal there have been a number of proposals to plant trees for the purpose of absorbing carbon emissions and helping mitigate climate change. However, a new study from the Carnegie Institution’s Department of Global Ecology and Lawrence Livermore National Laboratory says that careful consideration should be given as to where these forests are planted. Planting trees in temperate regions could actually contribute to global warming.

Atmospheric carbon dioxide levels closely correlated with global temperatures

Studying ice cores from Antarctica, scientists of the Alfred Wegener Institute for Polar and Marine Research extended the record of historic concentrations of carbon dioxide, methane and nitrous oxide in the atmosphere by 250,000 years. The team found a close correlation between atmospheric carbon dioxide levels and global temperatures. Over the past 650,000 years, low greenhouse gas concentrations have been associated with cooler conditions.

Humans impacted climate thousands of years ago

New research suggests humans were influencing the world’s climate long before the Industrial Revolution. Atmospheric levels of methane, a potent greenhouse gas, climbed steadily during the first millennium due to massive fires set by humans clearing land for agriculture.

Scientists from the Max Planck Institute for Nuclear Physics have now discovered that plants themselves produce methane and emit it into the atmosphere, even in completely normal, oxygen-rich surroundings. The researchers made the surprising discovery during an investigation of which gases are emitted by dead and fresh leaves. Then, in the laboratory and in the wild, the scientists looked at the release of gases from living plants like maize and ryegrass. In this investigation, it turned out that living plants let out some 10 to 1000 times more methane than dead plant material. The researchers then were able to show that the rate of methane production grew drastically when the plants were exposed to the sun.

Although the scientists have some first indications, it is still unclear what processes are responsible for the formation of methane in plants. The researchers from Heidelberg assume that there is an unknown, hidden reaction mechanism, which current knowledge about plants cannot explain – in other words, a new area of research for biochemistry and plant physiology.

In terms of total amount of production worldwide, the scientists’ first guesses are between 60 and 240 million tonnes of methane per year. That means that about 10 to 30 percent of present annual methane production comes from plants. The largest portion of that – about two-thirds – originates from tropical areas, because that is where the most biomass is located. The evidence of direct methane emissions from plants also explains the unexpectedly high methane concentrations over tropical forests, measured only recently via satellite by a research group from the University of Heidelberg.

But why would such a seemingly obvious discovery only come about now, 20 years after hundreds of scientists around the globe started investigating the global methane cycle? “Methane could not really be created that way,” says Dr. Frank Keppler. “Until now all the textbooks have said that biogenic methane can only be produced in the absence of oxygen. For that simple reason, nobody looked closely at this.”

The fact is that, in order to determine the quantity of emissions, scientists indeed have to make very careful measurements. The researchers from Heidelberg conducted most of their experiments in methane-free air, in order to factor out the high natural background of methane. Furthermore they used isotope analysis to show beyond doubt that this was an undiscovered process of methane production. By “looking closely” – despite established opinion – they made a discovery that will require textbooks to have their passages about methane production rewritten.

Following up on this discovery, the scientists now will continue laboratory work, as well as field and remote sensing studies, to better quantify the strength of these methane emissions. A related exciting question is which role the biosphere has played in methane production in the history of the earth, and what kind of influence rising global temperatures and carbon dioxide concentration have on the production of methane from plants. Answers to these questions are important for understanding the feedback mechanisms between climate change and greenhouse gas production.

mongobay.com

This is a modified new release from Max-Planck-Gesellschaft

Leave a Reply

You must be logged in to post a comment.


Bad Behavior has blocked 386 access attempts in the last 7 days.